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ABSTRACT
Customer-product interaction (pickup or put down) detection is
essential for autonomous retail. Previous studies have explored
many sensing technologies, including vision, load, RFID, and piezo.
These approaches often require strict deployment conditions, such
as Line-of-Sight (LoS), dense deployment, and/or high cost.

In this paper, we present a vibration-based customer-product
interaction detection system for autonomous retail. We propose to
use one vibration sensor placed on the back panel of the gondola
to achieve single-point sensing to monitor all the shelves on the
gondola. The key challenge is to detect pickup of small items (e.g.,
candy bar), which induces extremely low SNR vibration signals.
We introduce CPA, a cyber-physical augmentation scheme to en-
hance the vibration sensing signal via a physical arc structure and
achieves high accuracy labeling-free event detection. We evaluate
CPA in a real-world scenario by deploying a vibration sensor on a
retail gondola to monitor interactions across multiple shelves. Our
approach demonstrates up to 2.9× improvement for light-weight
product pickup event detection.

CCS CONCEPTS
• Computer systems organization→ Sensors and actuators.
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1 INTRODUCTION
Customer-product interaction detection is essential for autonomous
retail [16]. Various sensing methods have been proposed, including
vision [16, 18], RFID [13, 15], load [16], and pressure (piezo) [5]
based approaches. They have various limitations in real deploy-
ments. Vision-based methods require line-of-sight (LoS) and might
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Figure 1: Illustration of the vibration-based single-point sens-
ing for customer-product interaction detection. The pickup
and/or put down events generate vibrations that propagate
through the gondola structure and are captured by the vibra-
tion sensor on the back panel of the gondola.

not work if the human body or shelf blocks the view. RFID-based
methods often require assigning a tag for each product item, which
causes a continuous cost of labor and tags. Load-based and pressure-
based methods usually require a dense deployment, which causes a
cost increase. To address these limitations, we present a vibration-
based single-point sensing solution to allow low-cost monitoring
without the requirement of gondola retrofit.

Structural vibration-based sensing methods are emerging and
allow various smart building applications with sparse deployments
[11, 21]. They can be easily applied to existing infrastructures, such
as the retail gondola1, as shown in Figure 1. First, we deploy the
vibration sensor on the back panel of the gondola to monitor the
vibration of all shelves. The customer-product interaction-induced
vibration propagates through the gondola structure and is cap-
tured by the sensor. Then, we can infer the interaction information
via the vibration signal and enable autonomous retail and/or in-
ventory monitoring. However, this is challenging for traditional
vibration-based human sensing systems because of the extremely
low Signal-to-Noise Ratio (SNR) signals and/or expensive cost
of labeling. For example, when we use the traditional vibration-
based sensing system to detect events of picking up an energy bar
(60 grams), we could only achieve a 5% detection rate (more details
in Section 4.2). On the other hand, manually labeling the event from

1A gondola is a freestanding fixture used by retailers, and its shelves are mostly used
to display merchandise [1].
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Figure 2: Deflection models. (a) Cantilever end-load deflec-
tionmodel described with the parameter of force 𝐹 and force-
fixed-end distance 𝐿. (b) Pick-up event induces vibration by
restoring deflection caused by product load. (c) Deflection
models applied on the gondola – individual shelf and back
wall.

the video is impractical for a retail store that contains hundreds
and thousands types of items [2].

In this paper, we present CPA, a cyber-physical augmentation
scheme that enhances the traditional vibration sensing system to
allow low-cost single-point sensing on each gondola. With one
vibration sensor on the gondola’s back panel, we are able to monitor
customer-product interaction on multiple shelves. CPA handles the
aforementioned challenge via 1) physical augmentation with a
physical arc between each shelf and the back panel to enhance the
vibration signal on the back panel; and 2) cyber augmentation with
a combination of pseudo labeling and binary classifier to eliminate
the need for manual labeling. The contributions of this paper can
be summarized as follows:

• We introduce a vibration-based single-point sensing system
for customer-product interaction detection.

• We present CPA, a cyber-physical augmentation scheme to
enable accurate interaction detection with extremely low
SNR signals and without manual labeling.

• We evaluate CPA through real-world experiments on a retail
gondola.

2 BACKGROUND: DEFLECTION AND
VIBRATION

Deflection describes the degree of displacement for the structural
element under a load [14]. Figure 2(a) shows a cantilever beam
end-load deflection model, and the displacement 𝛿 at 𝐿 distance
from the support calculates as:

𝛿 =
𝐹𝐿3

3𝐸𝐼 , 𝐼 =𝑚𝐿2, (1)

Where 𝐼 is the moment of inertia [4]. Here, 𝐹 is the force applied, 𝐸
is Young’s modulus that describes how easily the material would
deform and stretch [14], and 𝐿 is the distance of the beam.

As shown in Figure 2(b), when we remove the force 𝐹 , the can-
tilever beam will return to its original shape, and the inertia of the
beam will cause vibration around that initial location [17]. This
vibration is described as a damped oscillation [3], and its amplitude
is proportional to the deflection displacement 𝛿 . Therefore, the

lighter the item is, the less deflection displacement its load will
induce, and the vibration induced by interacting with it is of lower
amplitude.

Figure 2(c) depicts the deflection models to describe the gondola
structure: 1) the shelf (𝐿𝑠ℎ𝑒𝑙 𝑓 ), with the support that connects it
to the back panel, and 2) the back panel (𝐿𝑏𝑎𝑐𝑘 ), with the support
that connects it to the ground. The customer-product interaction
(pickup and put down) can cause a displacement of the shelf and
hence generate vibration waves. When a person puts an item on
the shelf, this impact deforms the shelf and causes displacement.
For a product placed on the shelf, its load induces the deformation
of the shelf. When a person picks it up, the restoring force of the
shelf induces vibration.

3 SYSTEM DESIGN
We present a vibration-based customer-product interaction detec-
tion system for autonomous retails. Figure 3 depicts the system
overview.When the customer pickup or puts down a product on the
shelf, these interactions induce the shelf to vibrate. The vibration
propagates through the shelf surface and shelf-gondola connection
and is then captured by the sensor placed on the back panel of the
gondola shown in Figure 1.

However, this interaction-induced vibration signal significantly
dissipates at the structure connector between the shelf and the
back panel of the gondola, as shown in Figure 4(a). Therefore, it is
challenging to capture the interaction-induced vibration on
shelves via single-point vibration sensing at the back panel
of the gondola.

In addition, as mentioned in Section 2, the pickup interaction
induces an extremely low amplitude of vibration signal, which
makes event detection with a traditional energy-based approach
difficult. On the other hand, the machine learning approach can
effectively classify events from noise with time and frequency fea-
tures. However, it would require intensive labeling, which makes it
inapplicable for each shelf. Therefore, it is challenging to classify
these interaction events from noise without label.

We introduce CPA, a cyber-physical augmentation scheme, to
enhance its detection performance by augmenting both sensing
(Section 3.1) and learning (Section 3.2) perspectives.

3.1 Physical Augmentation to Enhance SNR
Vibration sensing signal quality is determined by both the data
acquisition hardware and the signal propagation media [20, 22,
23]. Here we focus on the physical augmentation of the signal
propagation media. To monitor multiple shelves via single-point
vibration sensing, the sensor is placed on the back panel of the
gondola.

Figure 4(a) shows the vibration wave propagation from the shelf
to the back panel of the gondola. The horizontal grey bar depicts
the shelf surface, and the vertical light grey bar depicts the back
panel of the gondola. We can consider it as a simplified model of a
flat rectangular plate with one edge fixed. The interaction-induced
vibration propagates along the plate surface and reaches the fixed
edge. Instead of deflecting the plate, the vibration dissipates at the
connecting edge, since the vibration particle motion is aligned with
(instead of perpendicular to) the surface of the back panel – the



§3.1 Physical 
Augmentation to 

Enhance SNR

§3.2 Cyber Augmentation for 
Event Detection

Interaction

Traditional Sensing System

Event Detection Classifier 
Pseudo Label Generation

Sensor

ADC

Energy-Based 
Event Detection

Event Detection Classifier
Event 

or 
NoiseNo

Yes
Event? 

Figure 3: System architecture. CPA contains physical augmentation to enhance SNR and cyber augmentation for event detection.
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Figure 4: Physical augmentation. (a) depicts the wave prop-
agation on the original gondola structure, where the shelf
vibration dissipates at the connector to the back panel. (b)
shows the wave propagation on the gondola with a physical
augmentation structure, where the wave is guided to propa-
gate on the back panel. (c) shows the physical augmentation
structure and the wave propagation direction changing over
the arc.

deflection along the surface of the back panel of the gondola is
almost zero.

On the other hand, the back panel of the gondola can be con-
sidered as a plate with a fixed edge on the floor. If the vibration is
perpendicular to the plate, it will propagate along the plate and be
captured by the vibration sensor. We present a thin arc structure
that can align the vibration direction on the shelf and the back
panel. We adopt a 90-degree arc architecture with a radius of 25mm
and a thickness of 2mm. Figure 4(c) depicts the wave propagation
along the arc structure, where the blue arrows represent the wave
propagation direction, and the black arrows represent the particle
motion direction. When the vibration wave propagates through
the arc architecture, the vibration direction changes with the arc
direction [8, 19]. Therefore, our 90◦ arc architecture can change the
vibration direction for 90◦, allowing the back panel of the gondola
to be used as an efficient vibration signal propagation media for
sensing.

3.2 Cyber Augmentation for Event Detection
CPA leverages the target data’s heterogeneity and similarity to
achieve labeling free accurate event detection. As discussed in
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Figure 5: Flowchart of the cyber augmentation for event de-
tection. The cyber augmentation contains two main parts:
event pseudo label generation (yellow box) and event detec-
tion classifier (blue box).

Section 2, items of different weights induce vibration signals of
different amplitude; hence these events’ SNR varies. As a result, the
interaction with heavier items can be detected with a higher detec-
tion rate using signal energy-based approaches [9]. These detected
events, which are mostly of heavy items, are then used as pseudo
labels of events to train an event detection classifier. Figure 5 de-
picts the flowchart of our cyber augmentation components, which
contains two main parts: event pseudo label generation (yellow
box) and event detection classifier (blue box).

Event Detection Classifier Pseudo Label Generation. We apply the
traditional energy-based event detection [11] to generate pesudo-
positive labels for the event detection classifier. First, a sliding
window (with a window size𝑊𝑑 ) is applied to the vibration signals,
and the windowed signal energy is calculated. A Gaussian model
(`,𝜎) is then established based on the windowed noise signal energy.
Next, for an incoming sliding window, its energy is compared to the
Gaussian model, and if the signal energy is higher than a threshold,
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e.g., ` + 3𝜎 , the window is considered as part of an event. When
there are consecutive windows detected as events, we output them
as an interaction event 𝐼𝐸. These detected 𝐼𝐸, which has a low
false positive rate and high false negative rate, are labeled as the
positive pseudo label. On the other hand, the ambient noise signals
acquired when the store is idle or closed, i.e. no customer in the
area is labeled as the negative pseudo label.

Event Detection Classifier. When enough pseudo labels are col-
lected, we use them and the corresponding signal segments to train
a binary classifier for event detection on each gondola. Because
part of the target signals (pickup of small items) often have ex-
tremely low SNR values and short duration – therefore are often
failed to be detected through the energy-based method. We apply a
sliding window with a small window size𝑊𝑓 to effectively capture
their features. For each windowed signal, we apply the continuous
wavelet transform (CWT) to calculate the component in multiple
scales and take the energy of each scale as a feature. Then, the
Min-Max normalized [12] energy array of all scales compose the
features of this window data. Extracted features and pseudo labels
are taken as inputs to train a binary classifier to determine if the
unlabeled windows are events or noises.

Multiple classifiers can be applied here, such as neural networks,
decision trees, and support vector machine (SVM). Exploring these
algorithms, however, is not the focus of this paper. Here, we adopt
SVM due to its generally good performance over a small amount
of training data. In addition, we choose the per-gondola design to
allow robustness and flexibility over different configurations (e.g.,
materials, total load, and items) of gondolas in stores.

4 EVALUATION
We conduct real-world experiments to evaluate CPA with multiple
product pickup and put down events.

4.1 Data Collection and Experiment Setup
4.1.1 Implementation. We 3D print our physical augmentation
structure with Acrylonitrile Butadiene Styrene (ABS) material. The
width, radius, and thickness of the physical augmentation are
120mm, 25mm, and 2mm, respectively. We use screws to mount the
physical augmentation between each shelf and gondola, as shown
in Figure 6(c). The geophone sensor is horizontally installed on the

(a) (b)

(d)(c)

Figure 7: An example of an energy bar (68g) put down and
pickup events with labels marked in rectangular boxes. (a)
and (b) show the time-domain and frequency-domain signals
without physical augmentation, respectively. (c) and (d) show
signals acquired with our physical augmentation.

back panel of the gondola with a 3D-printed mount. To enhance
the connection between the sensor and the back panel, we apply
resin glue between them. We estimate the cost to retrofit one gon-
dola with our prototype to be lower than $100, including $1 for 3D
printing, $4 for OpAmp, $20 for Arduino, $40 for Raspberry Pi, $10
for geophone, which can drop to $20 or lower if massive produced.

4.1.2 Data Collection. We select four products, including a plas-
tic bottle of chocolate (220g) and three snack bars with different
weights (68g, 36g, 20g), to evaluate the event detection performance.
We consider them to fall into two categories based onmass: medium
(≥ 100𝑔) and light (< 100𝑔). For each product, we put it down and
pick it up 10 times on the centre of each shelf marked in Figure 6(a)
and record the video as the ground truth of the event timestamp.
The materials of the shelf and back panel are steel and cardboard.

4.1.3 Baseline Methods and Evaluation Metric. We compare CPA
to three baselines: only apply physical augmentation to enhance
SNR (Only PA); only apply cyber augmentation for event detection
(Only CA); without physical and cyber augmentation (No Augm.).
We take the F1 score as the metric to evaluate the performance of
event detection. If the timestamp of an event (from the video data)
falls into the groundtruth period, we consider this detected event is
a true positive case (TP). Otherwise, this detected event counts as a
false positive case (FP). If no event is detected at the groundtruth
period, we count this as a false negative case (FN). The F1 score is
calculated as: 𝐹1 = 2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 ).

4.1.4 Algorithm Implementation. We empirically set the threshold
and sliding window length for the energy-based event detection
algorithm to be ` + 10𝜎 and 50ms. We set the window length for
the event binary classifier to be 20ms. We select the kernel-based
SVM model as the classifier to train and detect events. We use the
medium-weight product’s interaction for autonomous pseudo label
generation. We report the detection performance on all products
as the overall evaluation of CPA and baselines.

4.2 Result and Analysis
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Figure 8: The F1-score of CPA and baselines for pickup event
detection. The colour of the bar represents the augmentation
configuration:CPA (green), only physical augmentation (dark
blue), only cyber augmentation (light blue), and without any
augmentation (red).

We first depict the vibration data in Figure 7 with and without
physical augmentation to demonstrate the challenge of the low SNR
problem and the efficiency of our physical augmentation solution.
The signal is generated by putting down and picking up a 68g
energy bar. Figure 7(a)(c) show time domain signal, and (b)(d) show
frequency domain signals. The red rectangular boxes mark the
time periods where put down events occur, and the black boxes
mark pickup events. When the physical augmentation is applied, as
shown in Figure 7(c)(d), we observe a higher signal energy for both
pickup and put down events. Especially for the pickup event, when
the physical augmentation is used, both time and frequency domain
signals demonstrate distinguishable characteristics compared to
the noise. Without the physical augmentation, we do not observe
noticeable signal characteristic changes for pickup events, as shown
in Figure 7(a)(b).

We report the pickup event’s detection performance because 1)
it is a more challenging problem than detecting put down events,
and 2) it is a more frequent event that occurs in retail. Figure 8
shows the F1 score of the pickup event detection for each testing
product. First, we can observe that the F1 score of CPA is higher
than no augmentation, especially for the light products, where
no augmentation yields a 0 F1 score for 36g and 20g products,
and CPA still achieves 0.61 and 0.45. Overall, CPA achieves a 2.9×
improvement compared to the no augmentation baseline across
four products’ pickup events.

The F1 score of CPA for three light-weight products are 0.74,
0.61, and 0.45, respectively, which are the highest in all evaluated
methods. Comparedwith only physical augmentation,CPA achieves
0.21 (1.4 ×), 0.19 (1.5 ×), and 0.34 (4.1 ×) improvement, respectively.
Compared with only cyber augmentation, CPA achieves 0.68 (12.9
×), 0.50 (5.9×), and 0.45 (N/A). Physical augmentation demonstrates
a significant improvement. The efficiency of cyber augmentation
can be further improved by adapting amore representative classifier
model or extending the pseudo label set to more products.

5 RELATEDWORK
Many sensing modalities have been explored for event detection
in the autonomous retail setting. The vision is one of the most
widely used sensing modalities in autonomous retail stores. Load

sensor, RFID, and piezo sensor are themodalities that have also been
explored. All these modalities have advantages and disadvantages.

Vision Based Event Detection. The vision-based solutions rely on
the video feed from multiple overhead cameras to detect customer
activities and pickup and put down events [16]. They require the
line of sight, and are susceptible to the occlusion caused by the
customer’s hand. This makes it hard to detect products that are
relatively small in size, such as energy bar. The shelves or the
other hardware in stores also cause occlusion in the camera view,
especially when cameras are placed on the ceiling. Apart from this,
high computation power is required to process the vision data from
multiple overhead cameras.

RFID Based Event Detection. To overcome the occlusion in the
vision, RFID has been explored with RFID tags placed on individ-
ual products to track customers’ interaction with them [13, 15].
The RFID scanner placed either on the shelf, cart, or the checkout
counter scans the item customer interacted with and bills them
accordingly. Although this method is highly effective in product
identification and inventory monitoring, it brings the continuous
labour cost to place RFID tags on the products. Plus, the extra hard-
ware, like shelves or carts with scanners, brings the additional setup
cost.

Load Sensor Based Event Detection. The load sensors have also
been explored for event detection and product recognition in the
autonomous retail store setting. In this approach, shelves equipped
with multiple load sensors (typically one for each product) are
used to detect customers’ interaction with different products [16].
This method requires special hardware, which brings the added
deployment cost, which makes this solution less desirable for the
existing retail stores, as they have to replace all the existing gondola
shelves with new smart gondola shelves.

Piezoresistive Smart Textile. To convert existing shelves into smart
shelves, the piezo sensor base smart shelf-liner are proposed for
event detection in an automated retail store setting. In this ap-
proach, the smart shelf liner equipped with multiple piezoelectric
material-based pressure sensors in the grid configuration are placed
on the normal shelf to detect customers’ interaction with products
[5]. Although this method is highly effective in detecting the events
and customers’ interaction with the products, this method requires
a dense deployment of piezo sensors, making this method expensive
and less desirable for retailers.

6 DISCUSSION
Cyber-Physical Augmentation Optimization. The configuration

(material, size, number, location) of the physical augmentation struc-
ture may impact the signal augmentation efficiency. For example,
vibration wave propagation through different materials varies [7].
When placed at different locations with different densities/numbers,
the effective vibration propagation path may vary, which would
further impact system performance. In this paper, we explore a
simple prototype of the arc structure, and the parameters (e.g., ma-
terial, width, thickness) may not be optimized. Therefore, we plan
to explore the optimization of the physical augmentation, including
material, size and amount, in the future.



Cyber augmentation also can be further explored by utilizing
a more representative classifier model to replace the kernel-based
SVMmodel, such as neural network models. On the other hand, the
selected features may also impact the end performance. We plan to
explore more data-driven approaches to improve the feature repre-
sentation for event and noise signal distinction, such as contrastive
learning.

Mitigate Impacts from Ambient Vibrations. Multiple types of am-
bient events may induce vibration that can be detected by the
vibration sensor, such as customer’s footstep, door opening and
closing, and the customer touch the gondola. These detected events
are false positive cases for pickup/put down item event detection.
To distinguish these false positive events, we plan to explore 1)
classifier for different event recognition and 2) multi-modal sensing
to provide robust labeling for customer-item interaction events.

Prior work on vibration-based human sensing has shown that
different human activities would induce signals with distinguishable
characteristics [6]. Therefore, it is feasible to recognize signals that
are induced by pickup/put down items from those induced by other
activities. However, our current cyber augmentation design is not
sufficient to achieve pseudo labeling for different types of activities.
Since there will be cameras installed in the autonomous retails, we
could leverage camera data to achieve fine-grained cross-modal
pseudo labeling for cyber augmentation.

System Sensing Range. We plan to further study the augmen-
tation design and its impact on the system’s sensing range. For
example, what is the lower bound of the item that can be detected
and how does the augmentation design configuration impact it?
In this paper, CPA achieves 1 and 0.6 recall for 36g and 20g items,
respectively. If we focus on the recall performance, we can consider
the lower bound weight of the item that can be reliably detected
in our experiment is 36 grams. We plan to define the acceptable
detection rate based on the target application requirements and
conduct fine-grained experiments to explore the lower bound of
the system.

Multiple Users Scenarios. In the real-world scenario, there might
be multiple users interacting with the same gondola at the same
time. In the experiment, we observe that the duration of each vibra-
tion signal is around 0.1 seconds or less (might varies with gondola
material and item), which means it is a low chance that their inter-
action induced signals will be overlapped. In this work, we check
the feasibility of CPA when there is no signal overlapping. In the
future, we plan to explore methods for signal separation, leveraging
the information from other modalities. For example, the cameras
in the store can provide complementary information, such as the
number of customers interacting with the shame shelf, which could
provide prior knowledge for the signal separation.

Robustness to Inventory Changes. The total load on the shelf
may change over time. The vibration signals of the same event
(e.g., pickup a candy bar) may change when the total load and
load distribution change [10]. This means the event signals’ data
distribution may shift with an inferrable physical factor – total
load on the shelf. We plan to model this physical phenomenon and
design a physical and data-driven approach to mitigate the varying
total shelf-load induced data distribution shift. For example, by

applying a multi-task learning algorithm to 1) estimate shelf-load
and 2) detect events or identify events.

In a real-world scenario, the customer may also return the item
to another shelf, which changes the inventory on the shelf. We
plan to solve this problem by fusing the vision data, which provides
more information on the customer’s identity, location, and items.
We will also explore how to recognize the item using detected event
signals.

7 CONCLUSION
In this paper, we present a vibration-based single-point sensing
system for customer-product interaction detection for autonomous
retail stores. To enable the detection of extreme low-SNR signals
(light product pickup events), we introduce CPA, a cyber-physical
augmentation scheme that enhances vibration data SNR with a
physical arc structure and provides pseudo labels for event detection
classifier leveraging properties of signals generated by different
product pickup. We conduct real-world experiments to evaluate the
performance of our proposed signal augmentation structure and
event detection framework. CPA achieves up to 2.9× improvement
for the detection of light-weight product pickup events.
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