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ABSTRACT
Sensing signal quality affects signal processing efficiency, feature
extraction, and learning accuracy. An efficient and accurate assess-
ment of sensing system signal quality is essential for 1) large-scale
cyber-physical system deployment and 2) datasets sharing and
comparison. In this paper, we present a signal quality assessment
– S-score – for vibration-based human sensing applications from
two aspects – the hardware implementation and the deployment
structure. The 1) signal-to-noise ratio and 2) the signal frequency
response consistency over 2.1) sensing hardware, and 2.2) deploy-
ment structure are essential factors for structural vibration sensing
signal evaluation. The S-score metrics combines these factors to
a value between 0 and 1 with application-oriented weights. We
compared the proposed metrics to two baselines, and our metrics
achieved the highest correlation to the system performance, which
is the indicator of the data quality.
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1 INTRODUCTION
Structural-vibration sensing for people monitoring is widely used
in many applications, such as elderly care, smart building resource
management, and health care [1–4, 7, 9]. The intuition of vibration-
based approaches is that people interact with ambient structures all
the time and induce the structures to vibration. Vibration sensing
systems detect people’s interaction induced vibration and infer
human information from the vibration signals. Vibration-based
sensing approaches rely on the vibration sensor installed on the
structural surface in the indoor environment to collect the vibration
data. Due to the complexity and variation of the structure and
hardware implementation, the quality of the collected data varies,
which directly determines the performance of these applications.

Our prior works showed that the quality of acquired vibration
signals is mainly influenced by two key factors: deployed structure
and hardware implementation [6, 8, 9, 12]. The structural factor
affects the impulsive excitation’s response in two ways – 1) material
properties, such as stiffness, determines the signal-to-noise ratio
(SNR) and 2) structural elements, such as beam, pillar, and bearing
walls, affects the propagation velocity and attenuation. The hard-
ware implementation affects the signal quality in two ways – 1)
signal resolution, and 2) hardware consistency over multiple sens-
ing nodes as a sensor network. Prior work on acquiring high-fidelity
human-induced vibration signals only focused on enhancing the
signal resolution, which does not systematically assess the signal
quality through the aforementioned factors [8].

In this paper, we propose a signal quality metric – S-score – to
objectively assess the influence of the deployment structure and the
hardware implementation for human-induced structural vibration
signals. The S-score is a combination of SNR and signal consistency
and can be used to evaluate the sensor deployment scheme and
dataset quality. The contributions of this work are as follows.

• We present S-score, a signal quality metrics for structural
vibration-based human sensing dataset or deployment as-
sessment.

• We evaluate the proposed metrics through real-world exper-
iments and applications performance.

The rest of this paper is organized as follows. We introduce the
S-score metrics in Section 2 and evaluate the S-score through real-
world experiments and analysis in Section 3. We further discuss the
future directions in Section 4 and conclude this work in Section 5.
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2 S-SCORE METRICS
The proposed S-score consists of two components: 1) SNR and 2)
signal consistency. The SNR is a common index in signal processing,
and measures the ratio between the power of the signal and the
power of the background noise [10]. When the SNR is low, the
detection accuracy of the human-induced vibration decreases and
the original signal waveform is distorted by the additive noise. As
a result, we define the S-score ∝ SNR.

The consistency of signals over 1) different hardware (sensing
nodes), and 2) different locations in the same sensing structure
affects the information learning performance in applications such
as excitation source identification and localization. Low signal con-
sistency of the same impulsive excitation detected by different sens-
ing nodes indicates biased distortion over different sensors, which
makes the comparison between these signals unfair for collabora-
tive learning. Low signal consistency of different locations around
the sensor indicates the heterogeneity of the structure, whichmakes
the structural response near the sensor of high response variation.
As a result, the data collected in this deployment will have a larger
data distribution variation, which makes the accurate model of the
structural response difficult. We consider this situation as low data
quality due to deployment complexity.

The signal consistency component measures the similarity be-
tween two signals, we consider the candidate signals x and y and
discuss their score’s two components calculation in Section 2.1 and
2.2. We further discuss the selection of x and y for a deployment
assessment in Section 2.4.

2.1 SNR component
Traditional SNR calculates the ratio between the signal power of
the human-induced signal and the signal power of the noise, which
usually is a value larger than 1. However, for the pairwise metric
S-score, the component needs to take into account two signals SNR,
and the value needs to be normalized to the range between 0 and 1.

We define the SNR component of the pairwise vibration signals
x and y as s(x ,y), which is given by

s(x ,y) =
1
2

(
log f (snr(x))

log 20
+
log f (snr(y))

log 20

)
(1)

where snr(x) and snr(y) is the traditional SNR value for signal x
and y. The function f (snr(x)) shown below is a piecewise linear
function to constrain the SNR of signal x from the range of [0,+∞)

in the range of [1, 20]. The threshold is selected based on the im-
pulsive excitation signal detection algorithm through the ambient
structural vibration’s Gaussian noise model [9]. If the SNR of signal
x is less than 3 dB, we consider the detection of the signal is not
reliable and we define the SNR component of x as 0. On the other
hand, if the SNR of x is 20 dB, it means that the amplitude of x is 10
times the amplitude of the background noise. In this circumstance,
the threshold-based signal detection algorithm often achieve up
to 100% accuracy within the sensing range. The signal detection
rate will not increase when the SNR of the signal is larger than 20
dB, and we consider the SNR component as 1 when the SNR of the
signal is equal or large than 20 dB.
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Figure 1: The plot of f (snr(x)).

As shown in Figure 1, the value of slope and x-intercept is 19
17

and 40
19 to make sure the continuity of f (snr(x)) at point snr(x) = 3

and snr(x)= 20.

f (snr(x)) =


20 20 < snr(x)
19
17

(
snr(x) − 40

19

)
3 ≤ snr(x) ≤ 20

1 snr(x) < 3

(2)

2.2 Signal consistency component
We measure the signals consistency by calculating the similarity
between two signals and use the maximum value of the correlation
coefficient to define the similarity of two signals. If x and y are two
vibration signals with N samples each, the similarity score c(x ,y)
is given by

c(x ,y) =
MAXσxy
σxσy

(3)

where MAXσxy = max
−N /2≤m,n≤N /2

1
N−1

N∑
i=1

(xi+m − µx )(yi+n −

µy ). σx , σy is the standard deviation of signal x and y. µx , µy is the
mean value of x and y.

The two form of (1) and (3) also satisfy the following properities
(where ‘I ’ below can be either ‘s’ or ‘c’):

- Symmetry: I (x ,y) = I (y,x).
- Boundedness: 0 ≤ I (x ,y) ≤ 1
- I (x ,y) = 1 if and only if each element of x is equal to the
corresponding element of y.

2.3 S-score
The S-score is a linear combination of the SNR component and the
signal consistency component as shown in Equation 4.

S-score(x ,y) = a · s(x ,y) + b · c(x ,y) (4)

where a + b = 1, a > 0, b > 0. a and b are the weights of the two
components. These weights are application oriented. For example,
when used for the TDoA-based footstep localization, the variation
between hardware and the sensing area would cause the incon-
sistency of the signal response, which will increase the error of
signal arrival time estimation. As a result, the weight of the signal
consistency component should be larger than the SNR component.
On the other hand, for the application of pedestrian identification
through footstep induced vibration, the identity information is
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buried in the detailed signal, which indicates that the SNR plays a
more important role than it is in the localization application.

The S-score is in the range of [0, 1] and a higher S-score value
represents a higher signal quality. The S-score equal to 0 if and
only if the SNR component and signal consistency component both
equal to 0. The SNR component equal to 0 means that the SNR of
two signals both less than 3 dB. The signal consistency component
equal to 0 represents that the two signals are linear independent.
The S-score equal to 1 if and only if the SNR component and signal
consistency both equal to 1.

2.4 Dataset and deployment assessment with
pairwise S-scores

For datasets sharing and comparing or a new deployment plan,
two types of assessments with S-score can be conducted: structural
variation and hardware variation. We used a standard excitation –
dropping a tennis ball from 30 cm (1 ft) – in our assessments.

2.4.1 Structural variation. To assess the sensing structure or the
deployment area signal quality, we place the sensor on the floor,
and select K points d distance away around the sensor to apply
consistent excitation source on. Multiple S-scores are calculated
for 1) excitation of each pairwise location points or 2) excitation of
one reference location point and the testing location points. The
structural assessment for this sensing area is defined as the average
of these measured S-scores.

2.4.2 Hardware variation. To assess the networked sensing sys-
tem data quality, we placeM sensing nodes at the same structural
location, and apply the standard excitation at a same point d dis-
tance away from the sensors. Multiple S-scores are calculated for
1) excitation of each pairwise sensing nodes or 2) excitation of one
reference hardware and the rest of the testing hardware. The hard-
ware assessment for this sensor network is defined as the average
of these measured S-scores.

3 EXPERIMENT AND RESULTS
To evaluate the S-score performance in the real applications, we
conducted a set of experiments in different structures (office floor,
dorm floor, and wooden table), and focus on the signal quality
assessment which influenced by hardware implementation and
deployed structure.

3.1 Example Application: Excitation
Identification

We use the impulsive excitation identification as a general applica-
tion to evaluate the proposed metrics. The excitation examples we
used for the floor include hammer drop, tennis drop, and footstep,
and we used hammer drop, tennis drop, and finger knock for the
table. We define a dataset here as a set of data collected by one
sensor at a designated location that contains three types of excita-
tion. We use the classification accuracy of three types signals as
the measurement of signal quality in each experiment.

We target at the classification applications with limited labeled
data for training (only three data points each class from the refer-
ence dataset). As a result, the signal consistency component plays
a more important role than SNR component in this case. We set the

weight of SNR component as 0.3 and the weight of signal consis-
tency component as 0.7 (i.e., a = 0.3,b = 0.7) as an example of the
aforementioned application.

3.2 Baselines
We use the SNR index and the structural similarity (SSIM) index as
baseline approaches to assess the signal quality. The SSIM index
is widely used in many areas for signal quality evaluation, such as
image [11] and audio quality assessment [5]. The SNR index is a
pairwise measurement of SNR. The SNR index of signal x and y is
given by

SNR index(x ,y) =
1
2

(
f (snr(x))

20
+

f (snr(y))
20

)
The function f (snr(x)) is a piecewise linear function to constrain
the SNR of signal x in the range of [1, 20], and it’s definition is
shown in form (2).

3.3 Metrics
To evaluate the performance of the S-score, we measure the simi-
larity of the changing trend over different scenarios investigated.
The scenarios investigated include 1) same location, different hard-
ware (Section 3.4), 2) same hardware, different structural materials
(Section 3.5.1), 3) same hardware, different structural layouts (Sec-
tion 3.5.2). For each investigated scenario, we first select a reference
dataset, and then calculate the following four indexes: 1) perfor-
mance index (classification accuracy), 2) S-score index, 3) SSIM
index, and 4) SNR index, between the reference dataset and the
testing datasets. The testing datasets have different data qualities
affected by hardware or structural factors. The similarity of the
trend is measured by comparing testing datasets 1) system perfor-
mance index, i.e., classification accuracy, and 2) the dataset quality
evaluation indexes.

Each investigated scenario includes at least two cases (x-axis in
Figure 2, 4, and 5). We use one case as the reference case, and cal-
culate the ‘changing trend’ for each of the index as an index ratio
between the reference case and other cases. For example, in Table 2,
when compare structural materials at three different buildings, we
selected the office as the reference case, and calculated the accuracy
index ratio for dorm as dormacc ratio = dormacc/officeacc. We calcu-
lated tableacc ratio in the same way. Next, we compare the ‘changing
trend’ between accuracy (ground truth) and the rest of the indexes
measured by the mean square error (MSE) of the index ratio, which
is referred to as ratio MSE later. For example, the ratio MSE of the
S-score is calculated as the MSE between the vector [dormacc ratio,
tableacc ratio] and [dorms−score ratio, tabless−score ratio]. A lower ra-
tio MSE value means that the trend of this index is closer to the
trend of the classification accuracy, indicating better performance
of the metrics.

3.4 Hardware implementation factor
Due to the hardware variation, e.g., different version, resistor or
capacitor variation, multiple sensing nodes with the same design
may have different frequency response to the same excitation. We
use S-score to assess two sensing nodes compared to a reference
sensing node (used to collect the labeled data). The sensing node of
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Figure 2: The classification accuracy, S-score, SSIM index and
SNR index of two sensors in the office building.

Table 1: Hardware factor evaluation results.

Accuracy S-score SSIM SNR

sensor 1 ratio (ref) 1.00 1.00 1.00 1.00
sensor 2 ratio 0.91 0.88 0.83 0.87
ratio MSE – 0.03 0.08 0.04

higher signal quality is the one that acquires signals with higher
consistency to the reference sensing node.

We conducted experiments in an office building and applied
excitations at a designated location 30 cm away from three sensors
(placed together). We selected one sensor as the reference dataset
and calculated the four indexes of the testing datasets as discussed
in Section 2. We further calculated the classification accuracy for
identifying these three types of excitation. We use data collected
by the reference sensor to train a linear-SVM classifier. Then we
apply this trained classifier to classify the signals collected by two
testing sensors.

Figure 2 shows the four evaluated indexes of the two testing
sensors deployed in the office. The classification accuracy of sensor
1 is higher than sensor 2. It indicates that the frequency response
of the sensor 1 is more similar to the reference sensor than that
of the sensor 2. We select the indexes of sensor 1 as the reference
case and calculate the trend as discussed in Section 2 in Table 1.
As shown in Table 1, the S-score has the lowest ratio MSE value
compared to the SSIM index and the SNR index, indicating that the
trend of the S-score is most similar to the classification accuracy.

3.5 Structural factor
In the vibration-based sensing system, the structure is one part of
the sensing system: the medium of vibration wave transmission.
The structural property might change the frequency features of the
signal, and influence the signal quality. We consider the homoge-
neous structure more suitable for human-induced vibration sensing
compared to heterogeneous structure. Because homogeneous struc-
ture can be modeled with the wave propagation distance, which
is computational efficient. We investigate two structural factors –
material and layout – that may affect the homogeneity.

For each investigated location, we selected four points 30 cm
away around the sensor and apply consistent excitation as shown in

d = 30 cm
drop point

sensor

Figure 3: We select four points 30 cm away from the sensor
to apply consistent excitation on.

office dorm  table 
0

0.5

1

in
d

e
x

Accuracy S-score SSIM SNR

Figure 4: The classification accuracy, S-score, SSIM index and
SNR index of the three kinds of structures.

Table 2: Structural material factor evaluation results.

Accuracy S-score SSIM SNR

office ratio (ref) 1.00 1.00 1.00 1.00
dorm ratio 0.96 1.09 0.98 1.66
table ratio 0.80 0.72 0.46 1.48
ratio MSE – 0.10 0.24 0.69

Figure 3. We selected the data collected at one out of four points as
the reference dataset, and the data collected at the rest three points
as the testing dataset. We calculated the four indexes between the
reference dataset and testing datasets as discussed in Section 2.

3.5.1 Structure material. We deployed the sensor and collected the
data at three structures of different materials: 1) office building with
concrete floor, 2) dorm buildingwith concrete floor base and ceramic
tile surface, 3) wooden table. We demonstrates the calculated four
indexes in Figure 4. The classification accuracy of the office and
dorm achieved 100% and 96%, and it decreased to 80% on the table.
We believe that it is because of the heterogeneity of the wood
material causing different distortion effects during propagation to
different directions. We selected the office as the reference case
to calculate the trend and the ratio MSE. As shown in Table 2,
compared to the SSIM index, and SNR index, the S-score achieves
the lowest ratio MSE, indicating better performance in estimating
the influence of the structure material.
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Figure 5: The classification accuracy, S-score, SSIM index and
SNR index of the two different structural layout.

Table 3: Structural layout factor evaluation results.

Accuracy S-score SSIM SNR

open area ratio (ref) 1.00 1.00 1.00 1.00
bearing wall layout ratio 0.74 0.81 0.59 1.36

ratio MSE – 0.07 0.15 0.62

3.5.2 Structure layout. We deployed sensors at two locations with
different layouts in the office building. One location is 50 cm from
a bearing wall, and the other location is an open area (the distance
between the sensor location and the bearing wall is more than 3
meters). We calculated the four indexes of these two layouts, as
shown in Figure 5. The sensor deployed in the open area has a
higher classification accuracy than that of the sensor deployed
closer to the bearing wall, indicating a higher signal quality from
the open area deployment due to the homogeneity of the structure.
We chose the open area location as the reference case and calculated
the ratio MSE of the near bearing wall location. As shown in Table 3,
compared to the SSIM index, and SNR index, the S-score achieves
the lowest ratio MSE, indicating better performance in estimating
the influence of the structure layout.

4 DISCUSSION
In this paper, we empirically selected assessment parameters based
on the evaluated application, such as SNR component threshold, the
wight of SNR component and signal consistency, and the excitation-
sensor distance d . We plan to explore a systematical approach to
determine the parameter values by combining heuristic rules and
analytical models of the wave propagation. We will further conduct
experiments to understand the parameters’ effects on the S-score’s
signal assessing ability.

Another challenge we would like to explore is to assess the signal
quality automatically without manual calibration with standard
excitation. We plan to explore multi-modal IoT systems and utilize
their shared context to assess signals of multiple sensing modalities
simultaneously.

5 CONCLUSION
In this paper, we introduce a signal quality assessment metrics –
S-score. The S-score can be used in many aspects of the vibration-
based human sensing data acquisition, such as the signal quality
assessment, hardware quality evaluation, and deployment scheme
selection. The S-score consists of two parts: the SNR and the signal
consistency. The weight of these two parts is determined by real
applications requirements. Experimental results showed that S-
score achieves the highest correlation to the dataset performance
compared to two other baseline signal quality assessment metrics
in the evaluation of hardware and deployed structure variations.
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