
Occupant Activity Level Estimation
Using Floor Vibration

Yue Zhang
Electronic Eng.
Tsinghua University
zyee16@mails.tsinghua.edu.cn

Hae Young Noh
Civil and Environmental Eng.
Carnegie Mellon University
noh@cmu.edu

Shijia Pan
Electrical and Computer Eng.
Carnegie Mellon University
shijiapan@cmu.edu

Pei Zhang
Electrical and Computer Eng.
Carnegie Mellon University
peizhang@cmu.edu

Jonathon Fagert
Civil and Environmental Eng.
Carnegie Mellon University
jfagert@andrew.cmu.edu

Lin Zhang
Tsinghua-Berkeley Shenzhen
Institute
Tsinghua University
linzhang@tsinghua.edu.cn

Mostafa Mirshekari
Civil and Environmental Eng.
Carnegie Mellon University
mmirshekari@cmu.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

Copyright held by the owner/author(s). Publication rights licensed to ACM.
UbiComp/ISWC’18 Adjunct, October 8–12, 2018, Singapore, Singapore
ACM 978-1-4503-5966-5/18/10.
https://doi.org/10.1145/3267305.3274184

Abstract
Occupant activity level information is essential in many
smart home applications, such as energy management
and elderly care. Various methods have been proposed
for detecting occupant activities through vision-, acoustic-,
or radio frequency-based methods. However, the visual-
based methods function only when occupants are in the
visual field, the acoustic-based methods are sensitive to
noise, and the radio-based methods usually require occu-
pants to carry receivers all the time. These requirements
increase the difficulty of deployment and maintenance in
typical indoor smart home scenarios.

To overcome these shortcomings, we propose a structural
vibration-based approach. Specifically, we develop a sys-
tem with sparse sensor configuration deployed in the floor
to monitor the activity levels of different areas. Compared to
vision- and acoustic-based methods, our method is not re-
stricted by line-of-sight and less influenced by noise. Com-
pared to the access control system (ground truth), our sys-
tem enables finer grained activity level estimation with a
comparable resolution. We evaluate our system in a real-
world deployment in an office building and used the build-
ing access control as the ground truth system. Our system
shows a correlation coefficient at 0.836 when compared to
the ground truth systems.
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Introduction
Occupant activity level, a.k.a. the utilization frequency of a
designated area, can be widely used in many smart home
applications such as energy management [12, 17, 10], cus-
tomer traffic monitoring, and elderly care [1, 11, 8, 2]. Re-
searchers have explored various methods to obtain this
information from vision-based [7, 13], audio-based [15,
16], and radio-based sensing systems [9, 4]. Generally,
these systems fall into two categories: device-based and
device-free. With device-based approaches it is necessary
for occupants to carry special devices to receive signals
from transmitters. However, it is difficult to assume that all
the occupants carry these devices, especially in shopping
or hospital scenarios. On the other hand, device-free ap-
proaches, such as visual- and acoustic-based methods,
often have certain sensing requirements (e.g. light-of-sight,
and low ambient noise).

In this paper, we present a structural vibration-based oc-
cupant activity level estimation method. Since vibration
signals travel far in solids, the coverage of each sensor is
large, enabling sparse sensing configurations without the
need to carry a device. A typical sensing range for footstep-
induced floor vibration is between 3 and 10 meters (de-
pending on the structural materials and layout). Although
the sensing range is large in typical structures, the mag-
nitude of the footstep-induced vibrations is often small as
compared to the ambient vibration conditions due to the

high stiffness of the floor structure, resulting in low signal-
to-noise ratios (SNRs). Further, the structural conditions
(and hence SNR), vary spatially, resulting in different re-
sponse magnitudes in different areas of the sensing region.
Therefore, we summarize the main challenges of this work
as follows:

• Low signal-to-noise ratio (SNR) of occupant activity-
induced vibrations due to the high stiffness of the
floor structure.

• High variance of structural conditions causes different
SNRs in different sensing areas.

To address these challenges, we observe that human activ-
ity typically has a pattern based on the time-of-day. There-
fore, recorded floor vibrations vary with these patterns.
Using this insight, we adaptively set our activity detection
threshold based on the time of day and historical patterns,
thus enabling a method that is robust to low SNR and that
can adapt to different sensing configurations. The our major
contributions of this paper are as follows:

• We present a device-free occupant activity level mon-
itoring system through structural vibrations sensing.

• We utilize the prior knowledge that different sensing
areas during a particular time (i.e., early morning)
have similar activity levels to select thresholds of our
activity detection algorithm.

• We deployed our system in an office building to verify
the robustness of our system design through real-
world experiments.

The rest of this paper is organized as follows. Section ”Indoor
Activity Monitoring System” illustrates the main units of
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Figure 1: System architecture. The sensing module records
vibration signals on the floor. The data processing module extracts
vibration signals from background noise and utilizes the
cross-correlation method to recognize occupant activity vibration
signals. The activity level estimation module utilize a
threshold-based algorithm to detect the occupant activity event.

our system. Section ”Evaluation and Analysis” introduces
the performance of our system and analyzes occupant ac-
tivity from both temporal aspect and spatial aspects. Finally,
we conclude the paper.

Indoor Activity Monitoring System
Our system mainly consists of three modules: 1) sens-
ing, 2) data processing, and 3) activity level estimation,
as shown in Figure 1. The sensing module captures the
vibration signal of the floor, and sends the corresponding
digital signal to the server. The data processing module
reduces the ambient noise to increase the SNR and con-
ducts occupant induced vibration recognition through a
cross-correlation-based method. The activity level estima-
tion module counts the detected occupant activity through
a threshold-based method. Due to the structural variation,
different sensors deployed in different areas have different
SNR and sensitivity to the same type of occupant activities.
Therefore, the system automatically calibrates their thresh-
olds using heuristic rules.

Figure 2: A sensing unit consists of a geophone sensor, an
amplifier module, an ADC, and a processor (Raspberry Pi).

Sensing
Each sensing unit contains four main components, a geo-
phone, an amplifier, an analog to digital converter (ADC),
and a processor. An example of the sensing unit is shown
in Figure 2.

First, the geophone captures vibration signals on the floor
and generates an analog signal. Next, the amplifier im-
proves the analog signal’s resolution. The amplitude of
the signal is determined by the occupant activity and the
distance between the Geophone and the occupant. How-
ever, due to structural vibration reduction design, skyscrap-
ers with concrete floors often result to a low amplitude of
the vibration signals caused by occupant activities [?] (e.g.
walking or opening/closing doors). Therefore, the amplifier
module is added to enlarge vibration signals and increase
signal resolution. Then, the ADC digitizes the amplified sig-
nal. Finally, the processor collects the digital signal and
communicates with the server to synchronize timestamps,
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upload data, and report sensing unit states. To enable large
scale occupant activities level monitoring in a real-world
scenario, multiple sensing units are deployed in different ar-
eas. These sensors are synchronized to millisecond level to
ensure temporal comparison analysis.

Data processing
The data processing module aims to filter noise and recog-
nize the impulsive vibration signals. To filter noise, we utilize
the Wiener filter (a linear, time-invariant filter) to decrease
the interference of background noise. To recognize the
impulsive vibration signals, we adopt a cross-correlation-
based method which extracts signals that are similar to the
representative signals.

Noise filtering
Due to the high stiffness of the floor structure, one of the
primary research challenges of our work is the low SNR
of the occupant-induced vibration signals. To address this
challenge, we analyzed the measured background noise
and discovered that it was mainly from the circuit and was
an additional noise that fits a Gaussian distribution. There-
fore, we applied the Wiener filter to remove the background
noise. The Wiener filter minimizes the mean square error
(MSE) between the noise signal and the target signal, and
has a significant effect of filtering additional noise [3, 5].

Vibration recognition
The challenge faced by impulsive vibration recognition is
the variation of different structures. Apart from occupant in-
duced vibration signals, which are mostly impulsive, other
ambient vibrations can also be detected by our system. For
example, when a metro train passes by the building, it in-
duces a high-amplitude vibration signal on the floor, which
would interfere with the recognition of occupant-activity vi-
bration. We utilize a cross-correlation method to recognize
occupant activity signal by comparing the investigated sig-

nal to a representative signal. To address the structural
response variation, we collaboratively select representa-
tive signals for each sensor. The insight used here is that
we compute the average length of a few labeled vibration
signals from different sensors, and design an algorithm to
recognize vibration signals.

Activity Level Estimation
To integrate and compare data from different sensing units
deployed in multiple areas, the activity detection at each
area needs to be comparable. In real-world deployments,
the structural responses varies at different locations, which
leads to different sensitivity at different areas, i.e., the same
activity may generate vibration response of different signal
energy in different areas. Therefore, for each sensor, the
system selects detected events that have a signal energy
larger than a threshold (Collaborative Threshold Selection)
as area occupant activity (Threshold-based Event Detec-
tion) and update the hourly activity count of the sensing
area accordingly (Hourly Activity Count). We will explain the
Collaborative Threshold Selection in detail in the rest of the
section.

Collaborative Threshold Selection
To guarantee that each sensing unit has a similar sensi-
tivity, we adjust the sensitivity of each sensing unit by se-
lecting different thresholds in the vibration detection. We
assume that in the office building, each monitoring area
has the same activity strength from 12:01 AM to 5:00 AM.
The justification for this assumption is that, during this time
period every day, most occupants are not at work, except
for a small number of security patrols. Therefore, we uti-
lize the vibration signal magnitude during this time as our
threshold for detecting occupant activity at each sensor. To
accomplish this, we select a threshold that results in the
same number of detected activities for each sensor during
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Figure 3: Deployed sensing unit example: For safety reason,
sensing unit is installed underneath the floor, and covered with a
steel plate. The geophone sensor is fixed on the floor to ensure a
stable connection.

the unoccupied time between 12:01 AM and 5:00 AM.

Evaluation and Analysis
For system design evaluation, we deployed our system on
the 15th floor of an office building and collected the floor
vibration signals across four weeks. The investigated floor
includes meeting rooms, working areas, and laboratories.
Everyone needs to pass an access control system using
their RFID badges to enter the monitored area. The access
control records can be used to infer the information of occu-
pant activity level. Therefore, we select the number of times
that access control is activated every hour as the ground
truth of the area activity level.

We analyze four-week results from both spatial and tempo-
ral aspects to infer the occupant activity information. In the
temporal aspect, we can observe hour-level occupant ac-
tivity events, such as occupants taking breaks and starting
to work. Additionally, work patterns of workday and week-

Figure 4: Sensing unit deployment: five sensing units are
deployed on the 15th floor to monitor designated area usages,
including: a rest area, a working area, a meeting room, a
restroom, and a laboratory.

ends are observed in the results, which are analyzed in the
Analysis Section. Then, by comparing different sensing unit
results, we can obtain the distribution of occupant activity
level in different areas.

Experiment Setup
We deployed several sensing units on the 15th floor for the
building. As shown in Figure 3, sensing units were deployed
underneath the floor to prevent tampering and prevent trip-
ping hazards. The sensing units are provided with 24-hour
power supply and Ethernet connection. To ensure full cou-
pling of the geophone and the structure, geophones are
fixed to the concrete floor with an adhesive. The amplifica-
tion values are determined empirically based on observed
responses in each sensing region. A Raspberry Pi is used
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Figure 5: One sensor’s results compared with the access control
record in a typical day. The y-axis is normalized with the sum of
the 24-hour record

as the processor of sensing unit, collecting data from ADC
and sending it to the server.

As shown in Figure 4, we deployed several sensing units
in high traffic areas, while ensuring full coverage of the
main corridors and maintaining a sparse configuration. Ar-
eas covered with the deployed sensors include: a meeting
room, working area(s), and laboratories.

Evaluation of Occupant Activity Estimation
We evaluated our system performance by comparing its
performance to access control records over a one week
period. Figure 5 shows a sensing unit’s results compared
with the access control record. We use the correlation co-
efficient to measure the similarity between the ground truth
(access control record) and the activity estimation per hour
from our system. As shown in Table 1, the correlation coef-
ficient is in the range of [0.807, 0.877] on workday, while in
the range of [0.737, 0.772] on weekend, indicating different
occupant activity patterns on workdays and weekends.

Analysis
We analyze the occupant activity level from two dimensions
– spatial and temporal: 1) temporal variations in a single
sensor across a 24-hour time period, and 2) hourly spacial
activity level variations across the sensor network.

Temporal Aspect
We compare the number of hourly activity detected by a
sensor throughout a day. We plot the average number of
detected occupant activities an hour in Figure 6, where the
blue solid line shows the results from weekdays, and the
red solid line shows the results from weekends. Compared
to weekends, the average occupant activity level on a work-
day between 8 AM and 10 PM is about twice as high as that
of the weekend; which reflects the attendance of the stu-
dents. On the other hand, on a workday, occupant activity
levels decrease after 7 PM, but in weekend occupant activ-
ity decreases after 5 PM, from which we can infer that those
persons who do work on weekends tend to work shorter
hours and leave earlier than on a weekday.

Figure 7 shows four weeks of activity-level estimates from
Sensor 4. In this figure, ”Day 1” is a Saturday, each data
point represents one day during the observation period.
From these results, it is clear that activity level is signifi-
cantly higher on weekdays as compared to weekends. In
addition, activity level decreased on a holiday, when it is
likely that not many people were working. From these re-
sults, we can infer that fewer people are working on week-
ends and holidays as compared to normal weekdays.

Spatial Aspect
Also, experimental results verify that our system can pre-
cisely reflect the spatial information of occupant activity
level. Figure 4 shows the sensor placement and monitoring
regions, which include a rest area, working area, meeting
room, restroom, and laboratory. In Figure 8, comparing dif-
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Mon. Tues. Wed. Thur. Fri. Sat. Sun.

Correlation coefficient 0.834 0.832 0.852 0.807 0.877 0.772 0.737

Table 1: The hour-level correlation coefficient between our approach and the access control (ground truth) record.
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Figure 6: This figure shows the hour-level differences of occupant
activity level on workdays and weekends. On a workday, occupant
activity decreases after 7 PM. However, on a weekend day,
occupant activity decreases after 5 PM. We can infer that most
occupants tend to leave earlier on weekends.

ferent area’s activity levels on workdays and weekends, the
meeting room is the most active area, and the activity on
workdays is significantly higher than other areas. The ac-
tivity of working areas and rest areas is similar during the
workday, and the activity of laboratory and restroom is lower
than the working and rest areas. Each area of activity has a
decrease from 1 PM to 2 PM on the workday. This is likely
due to the observation that most most occupants take a nap
following lunch that lasts from 1 PM to 2 PM; causing a low
occupant activity level during that time period.

Figure 9 shows the daily activity number in each area across
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Figure 7: Detected activity level for one sensor across a 4-week
monitoring period. Note the significant decrease in activity
associated with weekends and holidays.

the four weeks that were monitored. From these results, we
can observe that the most active area is the meeting room,
and the least active area is the laboratory.

Conclusion
We introduced a device-free occupant activity level estima-
tion approach using floor vibrations. We overcame system
challenges of low signal-to-noise ratio (SNR) of occupant
activity-induced vibrations and high variance of structural
conditions causing different SNRs in different sensing ar-
eas by developing a noise-adaptive activity-level detection
approach. Through a real-world deployment of our sys-
tem, our approach achieved a high correlation with access
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(a) Area activity on workday.
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(b) Area activity on weekend.

Figure 8: Occupant activity level in the 5 sensing areas across a
typical 24 hour period.
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Figure 9: Distribution of occupant activity levels for each sensing
area across the 4 week monitoring period.

control (ground truth) record. The correlation coefficient is
in the range of [0.807, 0.877] on the workday, while in the
range of [0.737, 0.772] on the weekends.
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